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Abstract
Single neuron models are typical functional replica of the biological neuron that are derived using their individual and group responses in

networks. In recent past, a lot of work in this area has produced advanced neuron models for both analog and binary data patterns. Popular among

these are the higher-order neurons, fuzzy neurons and other polynomial neurons. In this paper, we propose a new neuron model based on a

polynomial architecture. Instead of considering all the higher-order terms, a simple aggregation function is used. The aggregation function is

considered as a product of linear functions in different dimensions of the space. The functional mapping capability of the proposed neuron model is

demonstrated through some well known time series prediction problems and is compared with the standard multilayer neural network.

# 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Time series prediction and system identifications are key

problems of function approximation. Various neural network

architectures and learning methodologies have been used in

the literature for time series prediction. In this paper, we used

a single multiplicative neuron for time series prediction. An

artificial neuron is a mathematical model for the biological

neuron and approximates its functional capabilities. The

major issue in artificial neuron models is the description of

single neuron computation and interaction among the neurons

with the application of the input signals. The McCulloch–Pitts

model initiated the use of summing units as the neuron model,

while neglecting all possible nonlinear capabilities of the

single neuron and the role of dendrites in information

processing in the neural system. In [1], the authors discuss the

relevance of multiplicative operations, particularly in com-

putation underlying motion perception and learning. It has

been further proved that Weierstrass’s theorem ensures that a

network composed of one input layer and one hidden layer of

product units can represent any continuous function on a finite

interval [2]. The detail description of learning methodology in

multiplicative neural networks has been provided by the
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authors in [23,24]. However, with an increasing number of

terms in the higher-order expression for the polynomial

neuron, it is exceedingly difficult to train a network of such

neurons. We consider a simpler model for the polynomial

neuron with a well-defined training procedure based on

standard back-propagation. The polynomial neuron proposed

in this work considers a product of linear terms in each

dimension of the space. Section 2 describes the single neuron

systems and the related literatures. The description of the

proposed multiplicative neuron with its capacity and learning

rules is provided in Section 3. Section 4 discusses the detail

applications of the proposed model for time series prediction

problems. Section 5 provides the concluding remarks of the

paper.

2. Single neuron systems

The human nervous system is an extremely complex

structure of about 1011 neuron units. The neurons are

information processing units with three basic components—

dendrites, soma and the axon and are arranged in functional

constellation or assemblies according to the synaptic contacts

they make with one another. The synaptic transmission involves

complicated chemical and electrical processes. The sensory or

chemical stimuli initiate the change in the synaptic potential.

The dendrites are receptive surfaces for input signals to the

neuron and generally conduct them passively to the soma. The

dendrites are highly branched structures which aid in spreading
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Fig. 1. A generalized single multiplicative neuron.
the synaptic or receptor potentials through itself to the site of

impulse initiation. Axons convert these signals into train of

impulses popularly known as spikes [3]. However, these are

simplified models and many instances of dendritic processing

have been observed which serve as a principle substrate for

information processing within the neuron itself. Dendrites

provide a back-propagation medium for the neuron to itself and

the interfacing between axons and dendrites are remodeled

throughout life explaining the formation of long-term memory

[4–6]. Multiplication in neurons often occurs in dendritic trees

with voltage-dependent membrane conductances [7]. In [8], the

authors provide a linear subspace based approach to model the

computation abilities of a neuron model. Linearity is believed

to be sufficient for capturing the passive, or cable, properties of

the dendritic membrane where synaptic inputs are currents that

add. However, synaptic inputs can interact nonlinearly when

the synapses are co-localized on patches of dendritic membrane

with specific properties. The spatial grouping of the synapses

on the dendritic tree is reflected in the computations performed

at local branches. An artificial neuron model should then be

capable of including this inherent nonlinearity in the mode of

aggregation. Multiplication being the most basic of all

nonlinearities has been a natural choice of models trying to

include nonlinearity in the artificial neuron model. In [1], the

authors explain the relevance of using multiplication as a

computationally powerful and biologically realistic possibility

of synthesizing high-dimensional Gaussian radial basis func-

tion from low dimensionality. The role of multiplication is

explained in the computation underlying motion perception and

learning in pairs of individual synapses to a small set of

neurons. The nonlinear capability of a neuron is usually

modeled through a stationary nonlinearity introduced after the

aggregation. This however is not sufficient to capture the

possible nonlinear associations among the inputs to the single

neuron system.

Motivated by the nonlinear characteristics of the neuron and

the classic Stone–Weierstrass’s theorem, which states that

every continuous and bounded function on a finite interval can

be approximated by a sequence of polynomials of a degree

arbitrarily large, a class of neuron models known as sigma–pi

[9] and higher-order [10–16] neurons have been introduced and

successfully used. The details of back-propagation learning

algorithm with multiplicative neural networks can be found in

[23,24]. These models have been proved to be more efficient as

both single-units and also in networks. However, they suffer

from the typical curse of dimensionality due to a combinatorial

explosion of terms, demanding sparseness in representation. In

this work, a new neuron model inspired from the class of

higher-order neurons is proposed. The proposed model has a

simpler structure without an issue of selecting the relevant

monomials or the requirement of sparseness that was necessary

to be imposed on the higher-order neurons to keep learning

practical [17]. Thus, the model can be used in the same form in

networks of similar units or in combination with the traditional

McCulloch–Pitts neuron model without considering sparseness

of terms. The number of parameters for the unit is twice the

dimensionality of the inputs to the neurons.
We represent the single neuron as a learning machine, the

problem of which is at the very core of intelligence- both

natural and artificial. The capacity of the proposed learning

machine using a multiplicative single neuron model is

investigated using Vapnik’s statistical learning theory [18].

The learning machine in our case is inspired from the model of

learning from examples, where the examples are generated

from a fixed but unknown probability distribution and are

independent and identically distributed. VC-dimension

bounds have been an important criteria to estimate the

capacity of product unit networks [19] and polynomial

surfaces [20]. We use the VC-dimension to evaluate the

capacity of the classifier constructed by thresholding the

output of the proposed neuron model. The real-counterpart of

the VC-dimension and pseudo-dimension, is similarly used to

estimate the function approximation ability of the single

neuron model. A similar study of multiplicative neural

networks is discussed in [21], where the author has provided

bounds for the VC-dimension and the pseudo-dimension for a

multiplicative neural network.

3. The multiplicative single neuron

The schematic diagram of a generalized single multi-

plicative neuron is shown in Fig. 1. Here, the operator V is a

multiplicative operation as in Eq. (1) with the weights wi and

biases bi being the parameter u of the operator.

Vðx; uÞ ¼
Yn

i¼i

ðwixi þ biÞ (1)

Unlike the higher-order neuron, this model is more simpler

in terms of its parameters and one does not need to determine

the monomial structures prior to training of the neuron model.

In [22], the authors have introduced a translated multiplicative

neuron, which is a special case of the neuron model proposed in

this work. The authors in [22] prove that such a neuron model

can solve the N-bit parity problem. In terms of the definition of

the higher-order neuron as given in [17], the polynomial neuron

model for an n-dimensional input, is a 2n�l higher-order neuron

and every variable has degree one such that the neuron has

individual degree one. It should be noted that the number of free

parameters in the higher-order neuron with the given structure

is same as that of the proposed neuron.

In this work, we consider a multiplicative operator and

investigate the abilities of such a model to serve as a typical

learning machine. In the next section we investigate the

capacity of the proposed neuron model and provide a bound on
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the VC-dimension and the pseudo-dimension of the multi-

plicative single neuron systems.

3.1. The capacity of the multiplicative single neuron

We begin by reviewing the classical Sauer’s lemma [25–27]

that forms the building principle for shattering and pseudo-

shattering of a finite set S using a function space F.

Lemma. For a function class F with VCdim(F) = d (Sauer

[25]),

PFðNÞ �
Xd

i¼0

N
i

� �
8 positive integers N� d:

Moreover, this bound is tight.

The Sauer’s Lemma provides a method to bound the growth

function using the VC-dimension and the following result

follows immediately.

Corollary. For a function class F with VCdim(F) = d, the

growth function

PFðNÞ ¼ 2N ; N � d

and

PFðNÞ<
�

eN

d

�d

; N > d:

Definition. The degree of a polynomial in n-variables of the

form

f ðxÞ ¼
X

i

x
r1i
1 � � � x

rni
n

is equal to max (r1i þ � � � þ rni). Similarly, the degree of a

curve is equal to the degree of the polynomial that defines the

curve.

Theorem. (Bezout’s Theorem) Given two curves of degree r

and s, respectively, they will meet in exactly rs points in C2—the

space of complex numbers.

3.2. Learning rule for the multiplicative single neuron

We describe an error back-propagation based learning rule

for the proposed neuron model. The simplicity of the learning

method makes it convenient for the model to be used in

different situations unlike the higher-order neuron model,

which is difficult to train and is susceptible to combinatorial

explosion of terms. A simple gradient descent rule, using a

norm-squared error function, is described by the following set

of equations

u ¼
Yn

i¼1

ðwixi þ biÞ (2)

y ¼ gðuÞ ¼ 1

1þ e�u
(3)
E ¼ 1

2N

XN

p¼1

ðy p � y p
desiredÞ

2
(4)

Dwi ¼ �h
dE

dwi
¼ �hyðy� dÞð1� yÞ u

ðwixi þ biÞ
xi (5)

Dbi ¼ �h
dE

dbi
¼ �hyðy� dÞð1� yÞ u

ðwixi þ biÞ
xi (6)

wnew
i ¼ wold

i þ Dwi (7)

bnew
i ¼ bold

i þ Dbi (8)

where P is the number of input patterns. The learning rate h can

either be adapted with epochs or can be fixed to a small number

based on heuristics. This learning method is used to train the

single neuron model in the next section to solve some famous

benchmark problems relating to both classification and function

approximation.

4. Results and discussion

Various neural network architectures and learning meth-

odologies have been used in literatures [28–33] for solving time

series prediction problems. We discuss some of the important

problems that can be broadly categorized as function

approximation. Detailed experiments and comparison with

existing multilayer network (MLN) topology suggest that the

proposed multiplicative single neuron model is a much more

improved, yet simpler form of neuron unit and can be trained

easily to achieve better results. In all of the problems we

discuss, the dataset has been pre-processed by normalizing

them between 0.1 and 0.9. In all the simulations, the results

reported are the average of several runs in each case. All

multilayer networks reported are trained using the standard

gradient descent learning algorithm. The network topology

reported is in the form of

n� h1 � � � � � hk � o;

where n is the number of input nodes, his the number of nodes in

the ith hidden layer (for i = 1, . . ., k) and o is the number of

output nodes. Only a single neuron model is used to solve the

problems in all cases in contrast to a multilayer network.

4.1. Mackey–Glass time series

The Mackey–Glass (MG) time series [34] represents a

model for white blood cell production in leukemia patients and

has nonlinear oscillations which is widely used for testing the

performance of neural network models. The series is a chaotic

time series which makes it an universally acceptable

representation of nonlinear oscillations of many physiological

processes. The MG delay-difference equation is given by

Eq. (9).
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Fig. 2. Long-term prediction results for the Mackey–Glass time series dataset using the proposed neuron model.

Table 1

Comparison of performance for Mackey–Glass time series dataset between

multiplicative neuron model and a standard multilayer network

Method Structure Parameters Training MSE Testing MSE Epochs

MNM 1 8 0.00099 0.001 3000

MLN 4 � 3 � 1 19 0.0030 0.0038 5000

Table 2

Comparison of performance for the Box–Jenkins gas furnace dataset between

multiplicative neuron model and a standard multilayer network

Method Structure Parameters Training MSE Testing MSE Epochs

MNM 1 4 0.0016 0.0018 500

MLN 2 � 2 � 1 9 0.0082 0.0226 5000
yðt þ 1Þ ¼ ð1� bÞyðtÞ þ a
yðt � tÞ

1þ y10ðt � tÞ (9)

where a = 0.2, b = 0.1 and t = 17. The time delay t is a source

of complications in the nature of the time series. The objective

of the modeling is to predict the value of the time series based

on four previous values. Four measurements y(t), y(t � 6),

y(t � 12) and y(t � 18) are used to predict y(t + 1). The training

is performed on 450 samples and the model is tested on 500

time instants post training. A mean square error of 0.00099 was

achieved on training the model for 3000 epochs. Fig. 2 shows

the training and prediction results. In Table 1, the performance
Fig. 3. Comparison of performance for Box–Jenkins time series dataset be
of multiplicative neuron model is compared with a multilayer

network with one hidden layer having three nodes and trained

using gradient descent. The performance of the multiplicative

single neuron is definitely better than the multilayer network in

this case, though it has fewer parameters.

4.2. Box–Jenkins gas furnace

The Box–Jenkins gas furnace dataset [35] reports the

furnace input as the gas flow rate u(t) and the furnace output y(t)

as the CO2 concentration. In this gas furnace, air and methane

were combined in order to obtain a mixture of gases which

contained CO2. We model the furnace output y(t + 1) as a

function of the previous output y(t) and input u(t � 3). The

performance is shown in Table 2 and Fig. 3.

4.3. HCL-Infinet internet traffic

Short-term internet traffic data was supplied by HCL-Infinet

(a leading Indian ISP). Weekly Internet Traffic Graph with a 30-

min average is shown in Fig. 4. The solid-graph in gray shows

the incoming traffic while the line-graph in black represents the

outgoing traffic. All values are reported in bits per second. We

propose a model for predicting the internet traffic using previous

values. Three measurements y(t), y(t � 1) and y(t � 2) are used

to predict y(t + 1) for both incoming and outgoing traffic. In both

the incoming and outgoing cases, 350 training samples were

taken and the model was tested for prediction using 274 samples.

Figs. 5 and 6 show the prediction results for incoming and
tween multiplicative neuron model and a standard multilayer network.
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Fig. 6. Testing result on the HCL-Infinet MRTG outgoing internet bandwidth usage data.

Fig. 4. Weekly graph (30 min average) of the internet traffic for the HCL-Infinet Router at Delhi, India.

Fig. 5. Testing result on the HCL-Infinet MRTG incoming internet bandwidth usage data.
outgoing internet traffic data, respectively. The performance is

compared with multilayer network for both the cases in Tables 3

and 4 and shows better results with fewer parameters.

4.4. Financial time series

The analysis and prediction of financial time series is of

primary importance and a great challenge in the field of
Table 3

Comparison of performance for the incoming internet bandwidth usage of the

HCL-Infinet Router data between multiplicative neuron model and a standard

multilayer network method

Method Structure Parameters Training MSE Testing MSE Epochs

MNM 1 6 0.0019 0.0071 1000

MLN 3 � 4 � 1 21 0.0021 0.0141 5000
economics. In this time series, one forecast the stock

exchange index of stock market and is definitely a difficult

job. We have used this time series for testing the learning and

generalization capabilities of the proposed neuron model. An

average of daily currency exchange rate difference between

USD and INR from 2002 to 2004 (total 800 samples) were

used. Five hundred samples were used for training the neuron

model and 300 samples were used for testing. Fig. 7 shows the
Table 4

Comparison of performance for the outgoing internet bandwidth usage of the

HCL-Infinet Router data between multiplicative neuron model and a standard

multilayer network

Method Structure Parameters Training MSE Testing MSE Epochs

MNM 1 6 0.0032 0.0066 300

MLN 3 � 4 � 1 21 0.0034 0.0134 5000
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Fig. 7. Testing result on the daily currency conversion rate difference data.

Table 5

Comparison of performance between multiplicative neuron model and a

standard multilayer network for daily currency conversion rate difference

Method Structure Parameters Training MSE Testing MSE Epochs

MNM 1 8 0.00082 0.00085 2000

MLN 4 � 5 � 1 31 0.0018 0.0011 10000
target and predicted values of the proposed neuron model. The

detail comparison with existing multilayer network is

provided in Table 5 which clearly indicates that the proposed

neuron models over performs existing multilayer neural

networks.

5. Conclusion

A multiplicative neuron model based on polynomial

structure has been proposed. This proposed neuron model

has been used as a learning machine and its function

approximation capabilities have been tested on some famous

time series prediction problems. The simulation results show

that the proposed neuron model exhibits significantly better

performance as compared to the existing multilayer neural

networks and reduces the computational complexity by more

than 50%. It has also been observed that in case of proposed

neuron model the computational time is significantly reduced in

all the reported time series prediction problems.
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